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Summary 

Obtaining and keeping a satisfactory closed 
beam orbit is a ma;or problem in the design of 
large accelerators. The system determining this 
orbit has many variables, these variables are 
distributed around the accelerator structure, and 
the existence of the beam is periodic. 

The designer may attempt to ensure satisfac- 
tory values for these variables by brute-force 
techniques such as ultra-precision construction, 
or he may apply the more subtle techniques of 
system control theory. In any case, he is dealing 
with :: multivariable , Interacting, sampled-data 
control problem, For the accelerators of the 
future, it may not be obvious that a solution 
exists. 

In fact, however, there are techniques where- 
by an equilibrium orbit may first be obtained and 
thereafter maintained in the presence of all expect- 
ed disturbances, by means of an electro-mechanical 
control system employing bean-position monitors. 
These techniques further perrlit a wide variety of 
operator experiments, such as trying various orbits, 
or restricting the spatial harmonic content of 
magnet re-positioning. 

'The purpose of this paper is to illustrate 
certain of these techniques. For clarity we 
will restrict our discussion to an elementary 
magnet-position control system for maintaining a 
cl.csed orbit in the presence of magnet support 
settling. We assume the beam to be continously 
present, rather than to be discrete with time. 
This and other errors, such as magnet imperfections, 
and o;her control variables, such as backleg wiad- 
ings, would be handled in The same general way in 
ii realistic design. 

Our prirciple aim i&L! be ;o show a technique 
whereby these interacting, multivariable control 
systens may bse designed and the minimum expected 
performance bounded.. 

Explanation of Symbols 

Capital letters ill'. h iie:!o;e matrices. 
Subscripts to capital 1eLters denote the type 

of mai;rix. 
A Ii denotes the n x n matrix A 

71. 

'<This work was done under the auspices of the 
1J.S. Atomic Energy Comission. 

Ad 
denotesthe diagonal matrix A,. Tlis 
matrix is L x II, with all. of?-ii.a;<orlal 
elements being zero. 

Ac 
denotes the column matrix A . This 
matrix has one column, vithCn elements. 

Id 
denotes the identity matrix. This 
matrix has all elements on the diagonal 
of value unity, and all off-diagonal 
elements of vniue zero. 

Lower case letters denote sc:.lars unless 
subscripted. The letter s denotes ?':?e 
usual complex function; s= c+- jtd 

Lover case letters which are subscri:.ted 
denote elements of matrices; ai. denote? 
t+qg element oQn;~;nAn lying in the 
i row acd j 1 1 . 

'ik 
denotes the Kronecker delta function: 

'ik 
= 1, i= k 

'ik =C,ifk 

A Magnet-Position Control Problem 

Examine Figures1 - 3. T is the matrix 
equation relating the displacgment of the equili- 
brium orbit from the center of the vacuum chamber 
at n points to vertical movements of the n magnet 
support piles. As pointed out by Glen Lambertson 
and Jackson Laslett of U.C.R.;., 'I' is in general 
nonsymmetric, and posseses zero an9 repeated eiger.- 
values. Therefore the inverse does not necessarily 
exist and its eigenvectors may not be linearly 
independent. However, by a similarity transformn- 
tion, Tn may be brought into Jordarl canonical form. 

R 
-lTnQn = ; = id + 'x i 1:) 

II n 
t 
x will be non-zero if T has some linearljl 
dgpendent eigenvectors. "S.il:ce (Figure :'.) 

kn = Tn + Ir. = (A. +-I ( 11) 
n 

the Bn in Figure 2 can be derived b;r 

Q 
-1 

n 
AnQn = AC1 = ::I, + fin i3) 

(, 3.4: 
‘n -'BnQn=K1/Xd -; n 

This form of modification was first suggested by 
G. Lambertson since it allows strong conceptual 
reasoning wher. determining An. 
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ISiuenvalue Form Aids DesiPn 

In particular, assume a disturbance P exist:: 
in Figure 2. The vallle of Xc whiclr one wo6 d 
introducew~ouldset Q = 0. Consider whatsthis 
X must bme and what Fte true beam error ac would 
bg in cm-sequence. 

Oc = 3 = T,Pc + A X r1 c 

Xc = -A -I TP 
n n c 

+'JP +xc) c 

(ii) 

( 5) 

(6) 

Using (1' - (3) in (5) arid solving, 

XL; = -Q,., (Ad-- ~,l)Qri-lPc (7) 

1ntrot1uc:i r'{; (1 ) ) (7) and (3) .into (6) arid solving, 

&c = Q,i(:d-l ~n~n)Cn-lPc (8) 

Py settirlg 

PC = Qr, EC (9) 

We modify (7) and (8) to obtain 

xc = Q7 (Ad -I 2 )P (10) n -c 

$, = c&-l XL, (X,) g, (11) 

This enables the designer to solve for x in 
terms of the effec: of the hssocinted pseudo 
eigenvectors, Q 

n' 
JhhmDl e . If 'I' has no linearly dependent 

cl genvecsors, as wirl probably be the case, 

i,, = ii, iri (ij 

-1 
Q c 

= 'i'::Yr: : Q&r 1 2 Fc = &EC 

.- 9, -1;) : -QQ,-l ‘z& z --?: 
:I : n' c: &!r):17 from (3) 

c 

1, = Q,,:ic = - :"(i-- ia! 11, 

I 
For very srroll A. . , q 

'i 
rz.y be quite large and yet 

hnve li.ttlc effec on .ttie closed orbit. If 

cAd-i id' were approxiniately Id, -x1 would have to .L 
make correspondingly large corrections, and 
yet accomplish little. 'Thus one might keep 
such rorrcctiorrs out of X c 

by C'lOOSi ':g 

Xii = 1 when A 
I' 1 ii << 1, using Iir, of (3). 

This is a reasonable approach, giving an inverse, 
and based on strong physical understanding. 

The Control System tiuations 

In Figure 3, we show a control scheme intend- 
ed to implement the desired solutions of (10) 
and (11). The final choice of fi will depend 
upon the stability of this systeg, which will 
depend upon Xi 5ogether with the accuracy with 
which the mathematical representation is 
physically approximated. 

In designing the control system of Figure 3, 
we must include the effect of errors which may 
result in physically implementing the model. 

Let us define: 
A = &?ror matrix. 
Also, let us substitute:- 

for T +H = An = QnAsQr;l , USC An (1%) n n 

where 3 li = a ,$Ad+fn) &n-l = Q,xr,Qr,-l (1'3) 

ard for (Tn+Bn)-1 = Cn use cI1 (1L) 

where En = Qn(xd -' + .&IQ -l (15) n 

Including the effect of monitor and motor error, 
we: define: 

Hd=Id+?d= Qn (Id + k,,Q -l- (16) n 

k 
kx 
S 

~ ' Q (Id + A,!Q,-l d - s II 

To simplify the expressions, let us fL;rther 
define: 

n = 0 (IS) 
c 

K<l Cr Hd = I.;n (l?! 

[“I = C(Tfk)(Kl 
nid n d + 8,) (ICI + $)Q -I (20) 

n i-I 

Substituting (12) - (17) into Figure 
solving using (18) and (l?), we rind 

x (s) = - (; Id + K&-' ICnTrIPc(") c 

and 
E 
Q _ I i sj = srn [Pc(sj i- xc:~)l 

3, and 
t'!lat 

(21) 

(6) 

provided a siablce i lr~crse txisl.:. BI1zation ( 21 ) 
is the system solution, and (6) the correspond~.n: 
uncorrectehle orhit error. 
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Exam le: Ass-me the system (21) is 
stable, and that 

P,(s) = l/s PC. (22) 

We can introduce (22) into (21) and apply the 
final value theorem, 

,lZ [s xc(s)! = - zn-l TnPc (23A) 

Using (13), (1) and (9)) we find 

s YO [ sXc( s)] = -Qnbd+8,) -l[n PC . (2?B) 

We may now establish the allowable range of,our 
errors 2 by the allowable range of X and 0 in 
(10) and"(l1). It remains to show thg con&aints 
necessary for stability. 

Eigecvalues and Stability 

Inspecting (21), we see that for a stable 
inverse to exist, all poles of 

(s/k Id + Mn ;in)-l= F n-1(s) (24) 

must be in the left half of the s - plane. That 
is, if the pth pole is defined as sp, and if det 
is defined to mean determinant, all solutions 
sp of the equation 

det(%,s,is/k id) = 0 

s=s;p= 
P 

1, . . ., n 

must be such that 

Re(sp) = Re(op+jwp) = op<O 

p = 1, . . ., C. 

(25) 

(26) 

If we multiply (20) and (13), and disregard 
all products of two or more error matrices as being 
of second order, we may substitute either 

An = Ad-lLtn + Ad -l Bn Ad 
k 

+;A -+-A n d n (27) 

or 
k 

2 =A -5, + An -lidAn + inAL + Ed 
n n 

in the product to obtain 

Mj,= Qn[Id+An]Qn-1 

or bf A = [I, + EnI nn 

(28) 

(29) 

(30) 

where the E denote the original error matrices 
before transformation. 
Introducing (30) into (25) and simplifying, 
our stability condition is of the form 

det(En - 0.1~) = 0 

a=ci;p= l,...,n 
3 

(31) 

where 
s = - k(l + a) (32) 

requires ap > -1 ; p = 1,. . , n (33) 

Equation (31) is seen to be a standard eigenvalue 
problem, and there etists a large library of 
programs for obtaining these eigenvalues, together 
with many approximation theorems for obtaining 
their bounds. 

Example 

In obtaining a complete solution, we 
might proceed as follows: 

Obtain B n 

If we measure&Tn in Figure 1, we must 
include the error n. 

Tn = Tn + & 
n 

The calculated An of (5) is then 

A, = Bn + Tn 

(34) 

and this is used to derive C in (14). But 
the control solution will benimplemented using 
the real Tn, so in (13) and (21), 

An = Bn f Tn . ( 36) 

If system (21) is stable, we may apply the 
final value theorem to obtain, for step disturb- 
ances l/s PC, 

Sly o[s $s)] = Tn[Id - T;n-lTn]Pc (37k) 

= Tn ii,-' BnPc (37B) 

Since we only know A 
3' from (351, we must 

consider 

T ?i -' BnPc = T,A,-l;An$+BnPc ( 38) nn 

where 

t -1 A,Hn-1 = A&An - En) 

= (Id - in An-1)-l (39B) 

We then use 

together with (3), (2), and (ll), to design 
B while placing constraints on (39B). That 
i",' the inverse in (39B) must exist, and must have 
re&onable bounds. 
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BmJnd 'Tn PIensurement Error 

We asslmc the elements of kl ir. (jf+) to be 
muball;; i nidependent rnn_iom vana l.es ."b with a 
common gaussian tiistribu',ion, ard the sane 
standard tlevint,ion t. f ,"5 * We also calculate the 

standarfl tleviatioli i -1 of the eleasnls of A . 
Corsiiierntior, of' (j9Sj rr.lght lead us to a& 

that 

; ;:, 
I 1 
T -1 L 
t 

'1 k :i kj < e; i=l,.. ,,n (41) 
.I 

wit11 a prob~lbilit~ of 0.95. 

From the central limit tieoreni, this requires 
ti1nt 

F p, 
L 

-1 ,ltl. 
-k a ~,~5 = ll\ll 3 6 b) =a 

j Y 

t 3 & = 
:.~ = r, si;.ndnrd deviation of ii ~ 

2 
and 

K= :,l,an:ir.r~A deviation of elements in Pin -1 . 

One mu:t consiiler the implication of (L+Z) 
in deciling the final value for E . 
(35) it is -Iear -zhaL 9 will aff~~ts~n~g izz 

as E sui xiile e. 1 II gen"eral, one wou~tl like 
I'11 to be measmed quite accurately. 

Hound the S:abilit~ 

h~on;r the man: theorems wktch are avnilable 
for bounding the eigenval-Jes of (31) is the 
Gerszorin Circle theorem. Considering (32) 
and (3:) and the statistical nature of our errors, 
we m:i,; :ipply thi.r, theorem tc ( ?I) and obtain 

Ia 1 < i:I 1 cij j <l ; i = 1, . . . , n (43) 

Iv (~2::) 

A -1 $ -1 j, 
t 

7 A --E n-1 
c t1 I, 'n- n n . (44) 

I I' ic: ii::sumt: that all error matrices in (2aj 
rire defirhed stat.istiCallj~, as UiE k 

~Tth kno;.n Stzndzd deKntions, 
n' 

Xit nitty again use 

the ',llec~~-; ,sf random v:tri-hles :tnri :he cer,trnl 

lixii t!teorm i.0 obtain 
<l-A 
: Cl 
-I I 

2. t 1 & c 6: k 

L- i ,i 
/,I;“,? ._ _1 6 r ~,~ ; k :- b I’ p 6 hjt E c 1 ~1+5) 

%S 

2 
where 6 = 

1’ 

k 
?A= 

When 

stat.dard dev of elements 

standard dev of elements 

standard dev of elenients 

i.nA : (f+bA) 

(/ifiB) 

k 
inE ) d (i&Z) 

either n or the deviations are 
small stabliltj;5) can ke used directly to esta.~lisii 

, . , In gcnernl, the solution of (31) 
will require use of a computer, and the degree 
of iifficulty will be about the same as determi:+ 
ing a satisfactory En, as in (34) - (42). 

Modif:r S;istem Equations 

We very briefly observe t:lat (21) is 
by no means -the only system equation, which we 
might choose. For example, if we substitute 

( y) fd for $-- FLi 

ou st,ability con?itions (33) and (45) becone 

( i+8ii) 

which arc clearly easier to satisfy for h >O. 
Substituting ($7) into (21) and applying the final 
value theorem, we see that the effect is to help 
stabilize by in%roAucir,n less correction for a 
given error. This approach is com12on to al? 
regulation systems in any Sisciplire. 

Determine k 

Since k in (12) measures ;he speed with 
w'lich the control system recovers from step 
errors, it is a measure of the power capacity 
of the motor drive system for changing the 
magnet support heights. Therefore, k shoulii 
be no larger than necessary. For reasonable 
performance, the system should recover about 
three tines as quickly as the fastest s'gnif'icant 
perturbation frequency of' Pc(t), f‘p max. 

Thus :: = 3 ( 2 ffp maxI 
(1 - n mnx) 

is a reasocable choice. 

Conclusion 

'This paper has attempted to give some indi- 
c;ktion of the techniqces which one may USC in 
o'staining a satisfactogecluil',briurn orbit b:; :I 
cc~li,r~l system whick monitors the be,m. I 
believe the gereral approach outlined here is 
practical, and that survey and foundation. 
requirements are substantially redu-ed irl 
consecjuer.ce. 
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Fig. 1. Transfer function relating pile settling ?c 

to closed orbit displacement $c at n points 

around the ring. Tn may be non-symmetric, sing- 

ular and possess small and rei-eated eigenvalues. 

Tn is also unalterable. 

J-+ xc ---J--j Bn : (DC 

+ 
pc - . T II 

I ’ 

---7+ :, 

, 

I 1 

Fig. 2. Transfer function showing required modification 

of Fig. 1 so that pile cap corrective displacements 

x can be made. Bn is a corrective matrix introduced 

b; the designer. Bn must be chosen so that (Tn+Bn) = An 

where iin has an inverse, and will generally represent 

a trade-off between stable regulation, physical range 
E 

of Xc and minimum 3 . 
C 



1965 KORTEGAARD: ACCELERATOR ALIGNMENT - A PROBLEM IN FEEDBACK-CONTROL SYSTEMS 

R c (in+ ~~)-l -3 $- xd 

T' lig. ?. Block diagram of the control system problem. While 

Bn is introduced to ensure that @ c is uniquely and 

adequately related to Xc, ic will only be bounded 

and these bounds will be weakened as B 
& 

is strengthened. 

in general, the greater the allowable 'pi max, the more 

stable the resulting control system and the less range 

required in the magnet support adjustments X . 
C 
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