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Summary

Obtaining and keeping a satisfactory closed
beam orbit is a major problem in the design of
large accelerators., The system determining this
orbit has many variables, these variables are
distributed around the accelerator struciure, and
the existence of the beam is periodic.

The designer may attempt to ensure satisfac-
tory values for these varisbles by brute-force
techniques such as ultra-precision construction,
or he may apply the more subtle techniques of
system control theory. In any case, he 1s dealing
with & multivariable, interacting, sampled-data
control protlem. For the accelerators of the
future, it may not be obvious that a solution
exists,

In fact, however, there are techniques where-
Ly an equilibrium orbit may first be obtained and
thereafter maintained in the presence of all expect-
ed disturbances, by means of an electro-mechanical
control system employing bean-position monitors,
These techniques further permit a wide variety of
operator experiments, such as trying various orbits,
or restricting the spatial harmonic content of
magnet re-positioning.

The purpose of this paper is to illustrate
certein of these techniques. For clarity we
will restrict our discussion to ar elementary
magnet-position control system for maintaining a
clesed orbit in the presence of magnet support
settling. We assume the beam to be continously
present, rather than to be discrete with time,
This and other errors, such as magnét imperfections,
and other control variables, such as backleg wind-
ings, would be handled in the same general way in
a realistic design.

Our prirciple alm will be vo show a technique
whereby these interacting, multivariable conirol
systens may be designed and the minimum expected
performance bounded,

Ixplanation of Symbols

Cepital letters ard XN denote matrices.

Subscripts to capital letters denote the type
of matrix,

An denotes the n x n matrix An'

*This work was done under the auspices of the
U.S., Atomic Energy Commission.

A denotes the diagonal matrix A, Tais
matrix is r» x n, with all off—u1auord]
elements being zero.

A denotes the column matrix A . This
©  mpatrix has one column, with n elements.
Id denotes the identity matrix. This

matrix has all elements on the diagonal

of value unity, and all off-dizgonal

elemerts of value zero.

Lower case letters denote scalars unless
subscripted., The letter s denotes the
usual complex functiorn; s =g+ juy

Lower case letters which are subscrizted

denote elements of matrices; ay s cenotes

t%ﬁ element o% matrix A lying in the

row and J column.”
bik denotes the Kronecker delta function:
= i =) = i’
bik 1, 1=k bik C, 17 k

A Magnet-Position Control Problem

Examine Figuresl -~ 3. T_is the mabrix
equation relating the displacement of the equili-
brium orbit from the center of the vacuum chamber
at n points to vertical movements of the n magnet
support piles. As pointed out by Glen Lambertson
and Jackson Laslett of U.C.R.L., T 1is in general
nonsymmetric, and posseses zero ani repeated eiger-
values. Therefore the inverse does not necessarily
exist and its eigenvectors may not be linearly

independent. However, by a similarity transforma-—
tion, Tn may be brough®t into Jordan canonical form.
-1 1§ 1 1 (l‘)
r = = +
< ]%Qn xn xd kn
!
A will be non-zero if T has some linearly
dgpendent eigenvectors. Since (Figure 2)
A= +35 = (a7t {2
n n r n
the Bn in Figure 2 can be derived by
_l It v ~ )
Q AR TG E A TN {3
1 - 1 (24
G B F A F g TNy

This form of modification was first suggested by
G. Lambertson since it allows strong conceptual
reasoring when determining An'
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Figenvalue Form Aids Desgign

In parvlcu_ar, assume a disturbance P exisbs
in Figure 2. The value of Xg which one wotid
introduce would set @ = 0, Consider what this

X must be and what %ke true beam error @, would
bé in corsequence.
= 0 = 1 > A+ 4 /
¢c ) I‘nPc An} c (4)
- -1 . -
X = -4 TP (5)
3 P
= T +
o, =1 (P, X, ) (6)
Using (1\ - (3) in (5) and solving,
. _ 1 4 -1
Ko - an (Kd xn)Qn Pc . )
Introducing U),(W mﬂ(})iﬂm(é)amimﬂﬁm&
no_1 o -1 .
5@ - Qn(Rd knxn>Qn Pc (8)
By setting
Pc = Qn Ec (©)
We modify (7) and (8) to obtain
o -1
kc B Qn <xd xn)—c (10)
€ _ -1y o
®C B Qn(xd .n)(An) Ec (11)

This enables the designer to solve for X in
terms of the effect of the associated pseudo
elgenvectors g

y n'

Ixample. I1f T_ has no linearly deperdent
eigenvectors, as will probably bte the case,

It

=%, in (1)
n_ g M /
R U1 W s S W
@C T o nc %n d™n ¢ Qn d—c
X = A "o = -Q oA VB, from (3)
¢ 5 2 ' o d’'=c’
B B .. —1 v op
zc B Qn[\ - ‘\}1 Kd) -

Tor very small k.. mey be quite large and yet
ave little effeu% on the closed orbit, If

(xd_l id) were approximately 1.,

maxe correspondingly large corrections, and

yet accomplish little. Thus one might keep

such corrections out of XC by choosing

x, would have to
Py
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. =1 when

1
o kli{ <L, using Bn of (3).

This is a reasonable approach, giving ar inverse,
and based on strong physical understanding.

The Control System Equations

In Figure 3, we show a control scheme intend-
ed to implement the desired solutions of (10)
and (11). The final choice of X will depend
upon the stability of this svsteﬁ, which will
depend upon A, together with the accuracy with
which the a%hemotlcal repregsentation is
physically approximated.

In designing the control system of Figure 3,
we must include the effect of errors which may
result in physicelly implementing the model.

Let us define:
A = Error matrix,
Also, let us substitute:_

- ¥ = = 0 -1 <
for 1n+Bn An andQn , use AIl (12)
< 1 -1
- .+ -
where Ar Q n(Ad 2n)Qn Q nQn (13)
- -1 . =
ard for (T +B )" =C_ use C (14)
n n
- -1 c -1 /
where Cn = Qn(xd + An>Qn (15)

Includirg the effect of monitor and motor error,
we define:

h h -1
= = ( +
Hy = Iy 5= Q) (g v a)ly (16)
k
_k_ ¥ = ]_{ -1
s 4 s oY (Id * An)Qn (a7)
To simplify the expressions, let us further

define:

E =0 (12)

C

K. C H,=H (19)

k ~1 -1

h
= I+ + + 0
Igm Qn( d An)(kd 8n)(ld An)Qn (20)
Substituting (l2) - (17) into Figure 3, and
solving using (18) and (19), we find that
X r:\ - '§ -+ : A \_-l M T /C, s
‘b(”) (k 1d rnAn) Ln]npc(“> (=)
and
[ . . )
fii‘:(\s) = Tn [Pc(s) + ,”LC(S)W (\6)

provided a stable inverse exists, Equation (21)
is the system solution, and (6} the corresponding
uncorrectable orbit error.
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Example: Assume the system (21) is where

stable, and that s= - k(1 +a) (32)
Pc(s) =1/s P, (22) requires a_ > -1 ;3 p= 1,. . , B (33)
We can introduce (22) into (21) and apply the Equation (31) is seern to be a standard eigenvalue
final value theorem, problem, and there exists a large library of

1im - Y programs for obtaining these eigenvalues, together

{s x(s)!l=-1% TP (234) with many approximstion theorems for obtaining
g =30 c n nec N
their bounds.
Using (13), (1) and (9), we find
Example
lim 10
s 20 [SXC(S)] = _Qn(xd+2n)_ MOE (22B) In obtaining a complete solution, we

We may now establish the allowable range of.our

errors & by the allowable range of X and © in
(10) and’'(11). It remains to show thé constfaints
necessary for stability.

Eigenvalues and Stability

Inspecting (21), we see that for a stable
inverse to exist, all poles of

(s/k1,+4 E)7=¥ L) (24)

n

must be in the left half of the s - plane, That
is, if the p'h pole is defined as sg, and if det
is defined to mean determinant, all solutlons

Sp of the equation

=0 (25)

det(MnKn*s/k Ed)

s = sp; p=1l, «. . «, 1
must be such that

Re(sp) = Re(op+jup) = gp<0 (26}

P= 1y, « o sy Ite

If we multiply (20) and (13), and disregard
all products of two or more error matrices as being
of second order, we may substitute either

-la

A= A+>\‘1R>\+ﬁ X
n_ “d “n d n "d nta T (27)
ar
3 = 4 F +A‘1§A + F +k
“n” "n mn n dn — Eq (28)
in the product to obtain

" - -1
M =
MnAn QnLId+An]Qn (29)
or M4 = [Id+ En] (30)

where the E denote the original error matrices
before transformation.

Introducing (30) into (25) and simplifying,
our stability condition is of the form

det(E - aly) =0
a=a 3 PT 1, ¢, N

~
o}

(31)

might proceed as follows:

Obtain B
n

If we measure,T in Figure 1, we must
include the error

- L

T =T + & (34)
n n n

The calculated A of (5) is then

A =B +T (35)
n n n

and this is used to derive C_ in (14). But
the control solution will be implemented using
the real T , so in (13) and {21},

A =B +T . (26)
n n n

If system (21) is stable, we may apply the
final value theorem to obtain, for step disturb-
ances l/s Pc’

(374}
{37B)

Since we only know A_, from (35), we must
consider :

T leP =Ta Y[aklEP (38)
nn nec nn nn nece
where
-1 _ ty-1
AR = An(An - En) (394)
- £, -1y
= (I, -E A ) {398B)
We then use
-1 ;
TA TBP, (40)
together with {3), (2), and (11), to desigr
That

B, while placing constraints on (39B).
is, the inverse in (39B) must exist, and must have
reasonable bounds.
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Bound T, Measurement Lrror

We assume the elements of E in (34) to be
mubally independent random varifbles with a
common gaussian distpribution, ard the sane
standard deviation, ; . We also calculate the
standard deviation 3 of Lhe elements of A 1,
Corsideration of (395) might lead us to agk

that

n n

Ut -1 .

LlLSe 2 |[<hBi=h oo, (41)
J k

with a probability of 0,95,

From the central 1limit theorem, this requires

that

b1
255 =4

O

. 1
= standard deviation of €. (42B)

.,
Lo . c s . -1 »
5 = sbandard deviation of elements in An . (420)

One must consider the implication of (42)
in deciding the final value for B, since fraom
(35) it is clear vhat B will affect & as well
as & sultable g. TIn general, one would like

Tn to be measured guite accurately.

Bound the Stabilityv

Among the many theorems which are available
for bounding the eigenvalues of (31) is the
Gersgorin Circle theorem., Considering (32)
and (33) and the statisticzal nsture of our errors,

we may apply this theorem to (31) and obtain

n
]q ‘ < 21 Uij <l3;1i=1,. .. ,n (43)
. )
In (22)
. ’ t
-1 4 at -1
o= A , = B »/
An Ln “n L n Ln An . (44)

Tf we assume that all error matrices in (28)

are defined statistically, as was t
’

. g n .
with known stendard deviations, we may again use
the theory of random variables and the central
limit theorem to obtain

1tl 1hz ¢ 2k
i H R RSB TN B R L (45)

=)

L
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2

where E = stardard dev of elements in An ) (464)
S = standard dev of elements in By ) (4EB)
k k
5 = standard dev of elements in Ed ) (46C)

When either n or the deviations are
small, (45) can e used directly to estartlish
stability. In general, the solution of (31)
will require use of a computer, and the degree
of difficulty will be about the same as determin-
ing a satisfactory Bn’ as in (34) - (42).

Modify System Equations

We very briefly observe that (21) is
by no means the only system equation which we
might choose. For example, if we substitute

, k
sthy ¥ s 1 ‘o
" ) Id for L Id (47)

our stability conditions (33) and (45) becomne

a <-1-h (484)
\nj + It
Lol <(1+h) (49m)
3 J

which are clearly easier to satisfy for h >0,
Substituting (47) into (21) and applying the final
value theorem, we see that the effect is to help
stabilize by introducing less correction for a
given error. This approach is common to all
regulation systems in any disciplire.

Determine k

Since k in (32) measures the speed with
which the control system recovers from step
errors, it is a measure of the power capacity
of the motor drive system for changing the
magnet support heights. Therefore, k should
be no larger than necessary. For reasonable
performance, the system should recover about
three times as quickly as the fastest significant
perturbation frequency of Pc(t), fp maX.
Thus % = 3( 2 ﬂ_ fp____ma_._x) ( AN

(1 - a max) 7

is a reasonable choice.
Conclusion

This paper has attempted to give some indi-
cation of the techniques which one may use in
obtaining a satisfactory equilibriun orbit by a
control system whichk monitors the beam., I
believe the gereral approach outlined here is
practical, and that survey and foundation
requirements are substantially reduced in
consequernce,
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Fig. 1. Transfer function relatingepile settling Pc
to closed orbit displacement Oc at n points
around the ring. Tn may be non-symmetric, sing-
ular and possess small and repcated eigenvalues,

Tn is also unalterable.

w
+
O<
=
e

+

Fig. 2. Transfer function showing required modification

of Fig. 1 so that pile cap corrective displacements

Xc can be made, Bn is a corrective matrix introduced

by the designer. Bn must be chosen so that (Tn+Bn) = An
where An has an inverse, and will generally represent
a trade-off between stable regulation, physical range

3
of Xc and minimum Qc’
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X +
-1 k c __;E,( %;__5;>
+ e
(Tn Bn) 5 Kd Bn CI)c

3, Block diagram of the control system problem. While

Bn is introduced to ensureethat @c is uniquely and
adequately related to Xc’ @c will only be bounded

and these bounds will be weakened as B_ is strengthened.
In general, the greater the allowable s max, the more
stable the resulting control system and-the less range

required in the magnet support adjustments XC.
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